Pancortins interact with amyloid precursor protein and modulate cortical cell migration.

Rice HC, Townsend M, Bai J, Suth S, Cavanaugh W, Selkoe DJ, Young-Pearse TL.
Journal   Development.
Species  
Analytes Measured   Abeta 40 , APP
Matrix Tested   Cell culture supernatants
Year   2012
Volume   139
Page Numbers   3986-3996
Application   Alzheimers
Abstract
Neuronal precursor cell migration in the developing mammalian brain is a complex process requiring the coordinated interaction of numerous proteins. We have recently shown that amyloid precursor protein (APP) plays a role in migration into the cortical plate through its interaction with two cytosolic signaling proteins, disabled 1 (DAB1) and disrupted in schizophrenia 1 (DISC1). In order to identify extracellular factors that may signal through APP to regulate migration, we performed an unbiased mass spectrometry-based screen for factors that bind to the extracellular domain of APP in the rodent brain. Through this screen, we identified an interaction between APP and pancortins, proteins expressed throughout the developing and mature cerebral cortex. Via co-immunoprecipitation, we show that APP interacts with all four of the mammalian pancortin isoforms (AMY, AMZ, BMY, BMZ). We demonstrate that the BMZ and BMY isoforms of pancortin can specifically reduce β-secretase- but not α-secretase-mediated cleavage of endogenous APP in cell culture, suggesting a biochemical consequence of the association between pancortins and APP. Using in utero electroporation to overexpress and knock down specific pancortin isoforms, we reveal a novel role for pancortins in migration into the cortical plate. Interestingly, we observe opposing roles for alternate pancortin isoforms, with AMY overexpression and BMZ knock down both preventing proper migration of neuronal precursor cells. Finally, we show that BMZ can partially rescue a loss of APP expression and that APP can rescue effects of AMY overexpression, suggesting that pancortins act in conjunction with APP to regulate entry into the cortical plate. Taken together, these results suggest a biochemical and functional interaction between APP and pancortins, and reveal a previously unidentified role for pancortins in mammalian cortical development.

View Publications

Related Products

R-PLEX Human Aβ40 (6E10) Antibody Set
Aβ40 (6E10) | Human
Singleplex
NEW
Human (6E10) Aβ40 Ultra-Sensitive Kit
Aβ40 | Human
Singleplex
V-PLEX Aβ Peptide Panel 1 (4G8) Kit
Aβ38, Aβ40, Aβ42 | Human, Mouse, Rat
Multiplex
V-PLEX Aβ Peptide Panel 1 (6E10) Kit
Aβ38, Aβ40, Aβ42 | Human
Multiplex
V-PLEX Aβ40 Peptide (4G8) Kit
Aβ40 | Human, Mouse, Rat
Singleplex
V-PLEX Aβ40 Peptide (6E10) Kit
Aβ40 | Human
Singleplex
V-PLEX Plus Aβ Peptide Panel 1 (4G8) Kit
Aβ38, Aβ40, Aβ42 | Human, Mouse, Rat
Multiplex
V-PLEX Plus Aβ Peptide Panel 1 (6E10) Kit
Aβ38, Aβ40, Aβ42 | Human
Multiplex
V-PLEX Plus Aβ40 Peptide (4G8) Kit
Aβ40 | Human, Mouse, Rat
Singleplex
V-PLEX Plus Aβ40 Peptide (6E10) Kit
Aβ40 | Human
Singleplex
Neurodegeneration Control Pack 1
Aβ38, Aβ40, Aβ42, Tau (total) | Human, Mouse, Rat
sAPPα Kit
APP | Human
Multiplex
sAPPβ Kit
APP | Human
Singleplex
sw sAPPβ Kit
APP | Human
Singleplex
sAPPα/sAPPβ Kit
APP | Human
Multiplex
Browse Our Products

By Analytes
By Applications
Search
Customer Service/Orders


Scientific/Technical Support


Instrument Support


Company Headquarters