Michael Tsionsky Tatiana Plissova Eli N. Glezer and Jacob N. Wohlstadter

Abstract

Mitogen-Activated Protein Kinases (MAPKs) are a widely conserved family of Serine/Threonine protein kinases involved in many cellular programs such as cell proliferation, cell differentiation, cell movement and cell death. MAPK signaling cascades are organized into three-tiered modules. MAPKs are phosphorylated and activated by MAPK-kinases (MAPKK), which in turn are phosphorylated and activated by MAPKK-kinases (MAPKK). The MAPKKKs are in turn activated by interaction with a family of small GTPases and/or other protein kinases connecting the MAPK module to the cell surface receptor or external stimulus.

We demonstrate a multiplexed assay approach for monitoring the activity of the entire MAPK cascade or any part of it using the Meso Scale Discovery Multi-ArrayTM platform. Whole proteins or short synthetic peptides can be employed as substrates. The assay protocols are compatible with high-throughput screening (HTS) and provide sensitive detection of enzyme activity across the MAP Kinase pathways.

Meso Scale Discovery Multi-Array Technology

Instrument Features

- Highly sensitive
- SECTOR™ Imager 6000 designed for high-throughput screening (HTS)
- SECTOR[™] PR 100 Reader ideal for assay development
- Custom optics
- High-speed motion control systems
- Electrochemiluminescence (ECL) detection

SECTOR[™] PR 100 Reader

er SECTOR[™] Imager 6000

Plate Features

- Disposable Plates
- Carbon Electrodes with high binding capacity
- Suitable electrochemistry for ECL
- Biocompatible: direct immobilization of avidin, IgG, membrane fragments, intact cells, etc.
- Functional Assays: simple binding reactions, GPCRs, enzyme cascades, post-translational modification, etc.

Electrochemiluminescence (ECL)

MAP Kinase Cascade

Substrates Used for MAP Kinase Cascade Signaling

Whole Proteins:	Surface-bound Myelin Basic Protein (MBP), whole ERK and MEK molecules
Synthetic peptides:	Biotinylated short peptides, which contain xxxPxTPxxx, xxxTEYxxx or xxxSMANSxxx

motifs, which mimic the target sequences of MBP, ERK and MEK respectively

ERK Activity Assays

Antibodies: Mouse anti-phospho-MBP IgG (primary) and MSD Sulfo-TAG[™]-labeled anti-mouse IgG (secondary)

coated with streptavidin

- with MBP used as the substrate $\,$ Signal-to-background ratio is $\sim\!14$ at 0.1 $\mu g/ml$ of ERK,
 - with a short peptide substrate

MEK Activity Assays

- Low background in absence of MEK
- Signal-to-background ratio at 0.1 μ g/ml of MEK is ~80 for whole ERK protein and ~5 for the peptide substrate

with streptavidin Antibodies: Mp44 Mouse IgG (primary) with MSD Sulfo-TAG-labeled anti-mouse IgG (secondary) or Rp44 Rabbit IgG (primary) with MSD Sulfo-TAG-labeled anti-rabbit IgG (secondary)

peptide containing SMANS motif immobilized

on MSD Multi-Array 96-well plates coated

Combined MEK & ERK Activity Assay

0.1 μg/ml MEK

Assay for Entire MAPK Cascade

Antibodies: MSD Sulfo-TAG-labeled anti-mouse IgG (secondary)

Enzyme:

Substrates:

Low background in absence of any components of the MAPK cascade

Multiplexing: Serine/Threonine and Tyrosine Kinases in one well

Enzyme: Active ERK-2 and Active c-SRC Substrates: poly-Glu-Tyr (PGT) and MBP immobilized on the surface of MSD Multi-Spot[™] 4-spot plate Antibodies: Mouse anti-phospho-MBP IgG, Mouse pY-20, Sulfo-TAG-labeled Anti-Mouse IgG

- Multiplexed format independently monitors the activities of 2 kinases
- Example shows preferential inhibition of ERK-2 by K252a, and c-SRC by Staurosporine

Conclusions

- Activity of the entire MAPK cascade or any part of it can be monitored using the MSD Multi-Array platform.
- Whole proteins or short synthetic peptides can be employed as substrates.
- Assay protocols are suitable for HTS applications.
- Multiple kinases can be assayed simultaneously in a single sample by using specific target substrates immobilized on a MSD Multi-Spot plate.

