Fit-for-Purpose Multiplex Panels and Their Utility in Biomarker Screening

D. Russell, J. Lewis, E. Spang, P. Oberoi, and J.N. Wohlstadter

 Meso Scale Discovery, Rockville, Maryland, USA(1) Abstract

Sathods

3 Specificity

$\%$ Non - specificity $=\frac{\text { non }- \text { specific signal }}{\text { specific signal }} * 100$

	Calbindin	axin-2	MP	MMP	MMP	MMP-9	Osteoa		TN-RI	TNF-RII
Calibrator Conc Tested (pg/mL)	6250	500	2500	25000	25000	125000	10000	25000	2500	625
	tectors									
Spot	Calbindin	Eotaxin-2	MP-5	MMP-1	MMP-3	MMP-9	steaativii	-Cadherin	TNF-RI	NF-RII
Calbindin	100\%	<1.0\%	<1.0\%	<1.0\%	<1.0\%	<1.0\%	<1.0\%	<1.0\%	<1.0\%	1.0\%
Eotaxin-2	<1.0\%	100\%	<1.0\%	<1.0\%	<1.0\%	<1.0\%	1.0\%	0\%	<1.0\%	<1.0\%
MP-5	<1.0\%	<1.0\%	100\%	<1.0\%	<1.0\%	<1.0\%	<1.0\%	<1.0\%	<1.0\%	1.0\%
MMP-1	<1.0\%	<1.0\%	<1.0\%	100\%	<1.0\%	<1.0\%	<1.0\%	<1.0\%	<1.	10\%
MMP-3	<1.0\%	<1.0\%	<1.0\%	<1.0\%	100\%	<1.0\%	1.0\%	<1.0\%	<1.0	<1.0\%
MMP-9	<1.0\%	<1.0\%	<1.0\%	<1.0\%	<1.0\%	100\%	<1.0\%	<1.0\%	<1.0\%	<1.0\%
Osteoativin	<1.0\%	<1.0\%	1.1\%	<1.0\%	<1.0\%	<1.0\%	100\%	<1.0\%	<1.0\%	1.0\%
P.Caaherin	<1.0\%	<1.0\%	<1.0\%	<1.0\%	<1.0\%	<1.0\%	<1.0\%	100\%	<1.0\%	<1.0\%
TNF-RI	<1.0\%	<1.0\%	<1.0\%	<1.0\%	<1.0\%	<1.0\%	<1.0\%	<1.0\%	100\%	
TNF-RII	<1.0\%	<1.0\%	<1.0\%	<1.00	<1.0\%	<1.0\%	<1.0\%	<1.0\%	<1.	100\%

(4) Sensitivity

Assay	Dilution	Median LLOD	Median ULOD	Units	Assay	Dilution	Median LLOD	Median ULOD	Unis
A2M	4000	0.26	2700	$\mu \mathrm{gmL}$	L-4	2	0.056	390	pgmL
Active GLP-1	2	0.20	1000	pgmL	l-5	2	0.19	1600	pg/mL
Adiponectin	4000	6.7	80000	ngmL	\|L-6	2	0.66	1500	pgImL
Angiopoietin 1		0.099	200	ngmL	L-6R	50	0.010	500	
jiopoieitin	2	5.0	2000	pgmL	$1 .-7$	2	0.27	1400	pglmL
B2M	4000	1.6	6500	ng/mL	L-8	2	0.13	1000	pg/mL
CA 125	20	0.0034	100	kulimL	Insulin	2	36	5000	
CA15.3	20	0.33	2000	mIUML	\|P-10	4	0.36	11000	pgomL
CA50	20	79	8000	mIUML	H-TAC	4	2.3	1000	
Calbindin	10	0.23	250	ng/mL	Lepin	2	0.053	100	ngmL
CEA	20	0.19	2000	ngmL	mCP-1	4	0.28	2000	pgImL
c.kit	20	4.0	3000	ngmL	MCP-2	2	2.1	10000	
Скмв	4	8	2200	ngmL	MCP-3	4	0.48	2500	pgImL
Clusterin	4000	0.059	800	ugmL	MCP-4	4	5.0	2600	ggmL
C.Pepide	2	28	5000	pgmL	M.CSF	2	0.072	2500	pgomL
CRP	1000	0.022	290	Hg/mL	MDC	4	11	41000	pgomL
Стаск	4	28	60000	pg/mL	Mesothelin	50	0.068	1200	ngmL
cTrl	4	0.0076	100	ngmL	Met	20	0.098	4000	ng/mL
cTnT	4	0.95	200	ngmL	MF	2	27	60000	pgomL
Cytokeratin-8	2	0.44	2000	ngmL	MIG	4	1.4	1000	pgImL
E-Cadherin	20	0.077	4000	ngmL	MP-1a	4	3.4	4200	
ENA-78	2	0.91	2500	pgmL	MP-13	4	1.5	4400	pgdmL
Endogin	50	0.038	500	ngmL	MP-3a	4	0.19	2500	
Eotaxin	4	6.4	6100	pgmL	MP-38	4	1.1	40000	pg/mL
Eotaxin-2	10	3.2	20000	pgmL	MP-5	10	0.0050	100	ngmL
Eotaxin-3	4	8.2	19000	pgmL	MMP-1	10	0.039	1000	ngmL
EPO	2	1.7	10000	miUmL	MMP-3	10	0.076	1000	ngmL
E.Selectin	2	0.053	400	ngmL	MMP-9	10	0.16	5000	
FABP3	4	0.25	400	ngmL	My 13	4	0.17	220	ngmL
Facorvill	4000	7.0	6800	ngmL	Myogobin	4	17	40000	ngmL
Fas	50	0.062	250	ngmL	Necin-4	2	0.52	2000	pgomL
Fast	2	0.85	5000	pgmL	NT.prosk	4	8.6	2000	
FGF (asic)	2	0.17	4100	pgmL	Osteoactivin	10	0.16	400	ngmL
Flt-1	2	1.3	16000	pgmL	Osteocalin	50	2.1	10000	ng/mL
Ftt-3 Ligand	20	0.71	60000	pgmL	Osieonectin	2	0.69	2000	nglmL
Fracalkike	4	0.10	400	ngmL	Osteopontin	20	14	4000	ngmL
Glip	2	4.9	2500	podmL	Osieoprotegein	2	0.010	200	
Glucagon	2	29	10000	pg/mL	P-Cadherin	10	0.099	1000	
Gw-CSF	2	0.27	1900	pogmL	PIGF	2	0.53	7100	pgomL
GRO-a	4	14	10000	pgmL	P.Selectin	2	0.13	400	ngmL
1.309	4	0.28	1000	pogmL	PYY (toal)	2	9.3	300	pgImL
ICAM-1	1000	1.4	69000	ngmL	Rantes	50	0.012	500	
ICAM-3	2	0.0040	400	ngmL	Resisitin	50	0.016	130	ngmL
IfN-a	2	2.1	10000	pgmL	SAA	1000	0.018	240	$\mu \mathrm{g} / \mathrm{mL}$
IEN-Y	2	0.67	2100	pgmL	SCF	2	0.36	10000	pgomL
IL-10	2	0.060	630	pgmL	SDF-1a	2	870	40000	
L-121/2-23940	2	0.54	5800	pgmL	TARC	4	1.1	6300	pg ${ }^{\text {m }}$ L
1-12p70	2	0.27	810	pgmL	Tenascin C	4000	2.8	690	
L-13	2	1.7	990	pgmL	Thrombomoduin	2	0.0041	400	ngmL
L-15	2	0.30	1400	pg/mL	Te-2	2	0.038	160	ngmL
L-16	2	5.1	4900	pgomL	TNF-RI	10	0.032	100	ngmL
L-17	2	0.93	9500	pg/mL	TNF-RII	10	1.4	25000	pgomL
${ }^{1 L-178}$	2	9.6	5000	pomL	TNF-a	2	0.12	640	pgImL
1 1-170	2	4.7	5000	pg/mL	TNF- β	2	0.079	1200	pg mL L
U-18	2	4.1	2500	pgomL	TPO	4	4.4	40000	mL
IL-1Ra	50	0.046	250	ngmL	TRAL	2	0.41	2000	pgomL
1-1a	2	0.13	670	pogmL	VCAM-1	1000	${ }^{6.3}$	70000	ng $/$ L
L-13	2	0.16	1000	pgamL	VEGF-A	2	0.93	2000	pgImL
${ }_{\text {LL-2 }}$	2	0.17	2800	pg/mL	VEGF-C	2	27	44000	pgmL
L-21	2	2.1	1000	pgomL	VEGF-D	2	5.3	47000	
1-33	2	2.7	1500	pgmL	YKL-40		0.038	2500	

(5) Sample Testing

© Reproducibility

,

Assay	Sample	Runs	Avg Conc.	Units	$\begin{gathered} \text { Avg Intapalate } \\ \text { yoc } \end{gathered}$	Interplate \%cV
A2M	Sample 1	6	1170	ugmL	${ }^{3} 3$	5.0
	Sample 2	6	1219	нg/mL	7.6	9.3
	Sample 3	6	${ }^{2391}$	H g / mL	9.1	11.1
	Sample 4	6	1149	$\mu \mathrm{gmL}$	2.4	8.5
Adiponecin	Sample 1	6	54704	ngmL	5.1	5.5
	Sample 2	6	5078	ngmL	8.5	7.1
	Sample 3	6	64417	ngmL	4.5	5.0
	Sample 4	6	2152	ngmL	4.2	3.9
Custerin	Sample 1	6	26.1	$\mu \mathrm{gmL}$	5.0	6.5
	Sample 2	6	20.4	$\mu \mathrm{gmL}$	8.4	9.8
	Sample 3	6	9.82	нgmL	5.1	5.6
	Sample 4	6	27.0	$\mu \mathrm{gmL}$	6.1	7.4
Factorvil	Sample 1	6	400	ngmL	4.2	4.5
	Sample 2	6	430	ng/mL	4.8	5.1
	Sample 3	6	${ }^{361}$	ngmL	${ }^{3.1}$	2.9
	Sample 4	6	888	nomL	3.9	4.6
FGF (basic)	Sample 1	6	1885	pgmL	2.8	4.2
	Sample 2	6	194	pogmL	5.6	6.0
	Sample 3	6	21.2	pgmL	5.9	6.4
	Sample 4	6	1.88	pogmL	5.1	${ }^{6.2}$
Ft-1	Sample 1	6	6560	pgmL	1.8	2.9
	Sample 2	6	698	pgmL	1.8	2.3
	Sample 3	6	68.1	pgmL	4.1	5.5
	Sample 4	6	79.3	pogmL	4.9	6.4
PIGF	Sample 1	6	2961	pgmL	${ }_{6} 6$	7.4
	Sample 2	6	${ }^{324}$	pogmL	5.7	6.7
	Sample 3	6	36	pogmL	6.9	9.7
	Sample 4	6	${ }^{26.7}$	pg/mL	2.7	7.5
Tenascin C	Sample 1	6	${ }^{37.6}$	ngmL	4.8	11.1
	Sample 2	6	34.4	nomL	9.6	11.6
	Sample 3	6	29.4	ngmL	13.3	${ }^{13.7}$
те-2	${ }_{\text {Sampe } 4}$	6	35.6 677	noml	${ }_{3}^{3.6}$	13.8 49
	Sample 2	6	${ }_{8.82}$	ngmL	${ }_{3.5}^{3.1}$	10.7
	Sample 3	6	2.05	ngmL	4.0	3.4
	Sample 4	6	11.8	ng/mL	5.4	123

(7) Conclusion

