MSD® MULTI-SPOT Assay System

Inflammation Panel 1 (rat) Kit

1-Plate Kit	K15179C-1
5-Plate Kit	K15179C-2
25-Plate Kit	K15179C-4

www.mesoscale.com®

MSD Toxicology Assays

Inflammation Panel 1 (rat) Kit Lipocalin-2, TSP-1, TIMP-1, MCP-1

This package insert must be read in its entirety before using this product.

FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES.

MESO SCALE DISCOVERY[®] A division of Meso Scale Diagnostics, LLC. 1601 Research Blvd. Rockville, MD 20850 USA www.mesoscale.com

MESO SCALE DISCOVERY, MESO SCALE DIAGNOSTICS, MSD, MSD GOLD, DISCOVERY WORKBENCH, MULTI-ARRAY, MULTI-SPOT, QUICKPLEX, SECTOR, SECTOR PR, SECTOR HTS, SULFO-TAG, R-PLEX, S-PLEX, U-PLEX, V-PLEX, STREPTAVIDIN GOLD, MESO, www.mesoscale.com, SMALL SPOT (design), 96 WELL 1, 4, 7, 9, & 10-SPOT (designs), 384 WELL 1 & 4-SPOT (designs), MSD (design), R-PLEX (design), S-PLEX (design), U-PLEX (design), V-PLEX (design), It's All About U, and SPOT THE DIFFERENCE are trademarks and/or service marks of Meso Scale Diagnostics, LLC. ©2012-2017 Meso Scale Diagnostics, LLC. All rights reserved.

Table of Contents

ntroduction	4
Principle of the Assay	5
Reagents Supplied	6
Additional Materials and Equipment	6
Safety	7
Best Practices	7
Reagent Preparation	8
Assay Protocol1	0
Analysis of Results1	0
Assay Validation and Verification1	1
Typical Data1	2
Sensitivity1	3
Precision1	3
Spike Recovery1	4
Dilution Linearity1	6
Specificity1	8
Samples1	8
Assay Components1	9
References1	9
Summary Protocol2	20
Plate Diagrams2	21

Contact Information

MSD Customer Service

Phone:1-240-314-2795Fax:1-301-990-2776Email:CustomerService@mesoscale.com

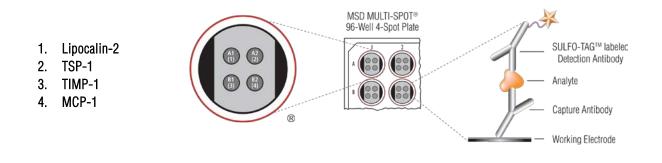
MSD Scientific Support

Phone:1-240-314-2798Fax:1-240-632-2219 attn: Scientific SupportEmail:ScientificSupport@mesoscale.com

Introduction

The Inflammation Panel 1 (rat) Kit is designed to measure four important biomarkers of inflammation:

Lipocalin-2, also known as neutrophil gelatinase-associated lipocalin (NGAL), is a small extracellular protein that binds to a range of small hydrophobic molecules and soluble macromolecules.¹ Lipocalin-2 is induced in epithelial cells, renal tubular cells, and hepatocytes upon inflammation or injury.² In urine, Lipocalin-2 may be implicated in the progression of renal injury and protection from damage, especially to the proximal tubule.³ High concentrations of Lipocalin-2 in serum can indicate an inflammatory response.²


Thrombospondin 1 (TSP-1) is a key modulator of interactions between cells and the extracellular matrix.⁴ Platelet-bound TSP-1 influences macrophages, fibroblasts, and endothelial cells to participate in wound healing at sites of injury and bleeding.⁵

Tissue Inhibitor of Metalloproteinases I (TIMP-1) is an endogenous inhibitor of matrix metalloproteinases (MMPs).⁶ TIMPs have been implicated in direct regulation of cell growth and apoptosis,⁷ and TIMP-1 plays a role in pathologic processes associated with rheumatoid arthritis⁸ and cardiovascular diseases.⁹ TIMP-1 can bind to both activated and latent forms of MMP-9.¹⁰

Monocyte Chemoattractant Protein-1 (MCP-1) is the principal monocyte-selective chemotactic cytokine.¹¹ MCP-1 expression is linked to diseases such as atherosclerosis, multiple sclerosis, and rheumatoid arthritis, and it has been suggested that MCP-1 attracts specific leukocytes to sites of inflammation.¹²

Principle of the Assay

MSD toxicology assays provide a rapid and convenient method for measuring the levels of protein targets within a single, smallvolume sample. The Inflammation Panel 1 (rat) is a multiplex sandwich immunoassay (Figure 1). This panel has been qualified according to the principles outlined in "Fit-for-Purpose Method Development and Validation for Successful Biomarker Measurement" by Lee, J.W. et al.¹³ MSD provides a plate pre-coated with capture antibodies. The user adds the sample and a solution containing detection antibodies conjugated with electrochemiluminescent labels (MSD SULFO-TAG[™]) over the course of one or more incubation periods. Analytes in the sample bind to capture antibodies immobilized on the working electrode surface; recruitment of the detection antibodies by the bound analytes completes the sandwich. The user adds an MSD buffer that provides the appropriate chemical environment for electrochemiluminescence and loads the plate into an MSD instrument where a voltage applied to the plate electrodes causes the captured labels to emit light. The instrument measures intensity of emitted light to provide a quantitative measure of analytes in the sample.

Figure 1. Spot diagram showing placement of analyte capture antibody. The numbering convention for the different spots is maintained in the software visualization tools, on the plate packaging, and in the data files.

Reagents Supplied

Draduat Description	Ctorogo	Quantity per Kit			
Product Description	Storage	K15179C-1	K15179C-2	K15179C-4	
MULTI-SPOT® 96-Well 4-Spot Inflammation Panel 1 (rat) Plate N45179A-1	2–8°C	1 plate	5 plates	25 plates	
SULFO-TAG Anti-rat Lipocalin-2 Antibody ¹	2–8°C	1 vial	1 vial	5 vials	
(50X)		(75 µL)	(375 µL)	(375 µL ea)	
SULFO-TAG Anti-rat TSP-1 Antibody ¹	2–8°C	1 vial	1 vial	5 vials	
(50X)		(75 µL)	(375 µL)	(375 µL ea)	
SULFO-TAG Anti-rat TIMP-1 Antibody ¹	2–8°C	1 vial	1 vial	5 vials	
(50X)		(75 µL)	(375 µL)	(375 µL ea)	
SULFO-TAG Anti-rat MCP-1 Antibody ¹	2–8°C	1 vial	1 vial	5 vials	
(50X)		(75 µL)	(375 µL)	(375 µL ea)	
Inflammation Panel 1 (rat) Calibrator Blend	≤-70°C	1 vial (20 µL)	5 vials (20 µL ea)	25 vials (20 µL ea)	
Diluent 7	≤-10°C	1 bottle	1 bottle	5 bottles	
R54BB-4 (5 mL), R54BB-3 (50 mL)		(5 mL)	(50 mL)	(50 mL ea)	
Diluent 100	2–8°C	1 bottle	2 bottles	10 bottles	
R50AA-4 (50 mL), R50AA-2 (200 mL)		(50 mL)	(200 mL ea)	(200 mL ea)	
Read Buffer T (4X)	RT	1 bottle	1 bottle	5 bottles	
R92TC-3 (50 mL)		(50 mL)	(50 mL)	(50 mL ea)	

Additional Materials and Equipment

- □ Appropriately sized tubes for reagent preparation
- Delypropylene microcentrifuge tubes for preparing dilutions
- Phosphate-buffered saline plus 0.05% Tween-20 (PBS-T) for plate washing or MSD Wash Buffer (Catalog No. R61AA-1)
- Liquid handling equipment suitable for dispensing 10 to 150 µL/well into a 96-well microtiter plate
- Delate washing equipment: automated plate washer or multichannel pipette
- □ Microtiter plate shaker (rotary) capable of shaking at 500–1,000 rpm
- □ Adhesive plate seals
- Deionized water
- Vortex mixer

¹ SULFO-TAG conjugated detection antibodies should be stored in the dark.

Safety

Use safe laboratory practices and wear gloves, safety glasses, and lab coats when handling kit components. Handle and dispose of all hazardous samples properly in accordance with local, state, and federal guidelines.

Additional product-specific safety information is available in the safety data sheet (SDS), which can be obtained from MSD Customer Service or at <u>www.mesoscale.com</u>.

Best Practices

- Bring frozen diluent to room temperature in a 22-25°C water bath. Thaw frozen calibrator (when applicable) on wet ice.
- Prepare Calibrator Standards and samples in polypropylene microcentrifuge tubes. Use a fresh pipette tip for each dilution and mix by vortexing after each dilution.
- Avoid prolonged exposure of the detection antibody (stock or diluted) to light. During the antibody incubation step, plates do not need to be shielded from light (except for direct sunlight).
- Avoid bubbles in wells during all pipetting steps as they may lead to variable results. Bubbles introduced when adding Read Buffer may interfere with signal detection.
- Use reverse pipetting when necessary to avoid the introduction of bubbles. For empty wells, pipette gently to the bottom corner.
- Plate shaking should be vigorous, with a rotary motion between 500 and 1,000 rpm. Binding reactions may reach equilibrium sooner if you use shaking at the middle of this range (~700 rpm) or above.
- When using an automated plate washer, rotate the plate 180 degrees between wash steps to improve assay precision.
- Gently tap the plate on a paper towel to remove residual fluid after washing.
- If an incubation step needs to be extended, leave the sample or detection antibody solution in the plate to keep the plate from drying out.
- Remove the plate seal prior to reading the plate.
- Make sure that the read buffer is at room temperature when added to a plate.
- Do not shake the plate after adding the read buffer.
- To improve inter-plate precision, keep time intervals consistent between adding the read buffer and reading the plate. Unless otherwise directed, read the plate as soon as possible after adding the read buffer.
- If the sample results are above the top of the calibration curve, dilute the samples and repeat the assay.
- When running a partial plate, seal the unused sectors to avoid contaminating unused wells. Remove all seals before reading. The uncoated wells of a partially used plate may be sealed and stored up to 30 days at 2–8°C in the original foil pouch with desiccant. You may adjust volumes proportionally when preparing reagents.

Reagent Preparation

Bring all reagents to room temperature. This is especially important for the Diluent 7, as some components are not soluble below room temperature. Thaw the stock calibrator on ice.

Important: Upon first thaw, separate Diluent 7 into aliquots appropriate for the size of your assay needs before refreezing. This diluent can go through up to three freeze-thaw cycles without significantly affecting the performance of the assay.

Prepare Calibrator Dilutions

MSD supplies a blended calibrator for the Inflammation Panel 1 (rat) Kit at 20-fold higher concentration than the recommended highest standard. We recommend an 8-point standard curve with 3-fold serial dilution steps and a zero calibrator.

Thaw the stock calibrator and keep on ice, then add to diluent at room temperature to make the standard curve solutions. For the actual concentration of the calibrator, refer to the certificate of analysis (COA) supplied with the kit or available at www.mesoscale.com.

To prepare an 8-point standard curve for up to 4 replicates:

- 1) Prepare the highest standard by adding 10 μ L of calibrator stock to 190 μ L of Diluent 100. Mix well.
- 2) Prepare the next standard by transferring 80 μL of the highest standard to 160 μL of Diluent 100. Mix well. Repeat 3-fold serial dilutions 5 additional times to generate 7 standards.
- 3) The recommended 8^{th} standard is Diluent 100 (i.e. zero calibrator).

Standards should be prepared at room temperature no more than 20 minutes before use.

Dilute Samples

For rat serum and plasma samples, MSD recommends a 100-fold dilution in Diluent 100; however, you may adjust dilution factors for the sample set under investigation. Samples collected via cardiac puncture may require more than 100-fold dilution.

To dilute sample 100-fold, add 10 μL sample to 990 μL of Diluent 100.

Do not re-freeze unused serum samples.

Prepare Detection Antibody Solution

MSD provides each detection antibody in a 50X stock solution. The working detection antibody solution is 1X. For one plate, combine:

- G μL of 50X SULFO-TAG Anti-rat Lipocalin-2 Antibody
- **Ο** 60 μL of 50X SULFO-TAG Anti-rat TSP-1 Antibody
- G μL of 50X SULFO-TAG Anti-rat TIMP-1 Antibody
- **Ο** 60 μL of 50X SULFO-TAG Anti-rat MCP-1 Antibody
- □ 2.76 mL of Diluent 100

Note: If you omit detection antibody for an analyte not being measured, add 60 µL of Diluent 100 for each omitted antibody.

Prepare Wash Buffer

MSD provides Wash Buffer as a 20X stock solution. The working solution is 1X. PBS + 0.05% Tween-20 can be used instead. For one plate, combine:

- □ 15 mL of MSD Wash Buffer (20X)
- □ 285 mL of deionized water

Prepare Read Buffer

MSD provides Read Buffer T as a 4X stock solution. The working solution is 1X.

For one plate, combine:

- □ 5 mL Read Buffer T (4X)
- □ 15 mL deionized water

You may prepare diluted read buffer in advance and store it at room temperature in a tightly sealed container.

Prepare MSD Plate

MSD plates are pre-coated with capture antibodies (Figure 1) and exposed to a proprietary stabilizing treatment to ensure the integrity and stability of the immobilized antibodies. Plates can be used as delivered; no additional preparation (e.g., pre-wetting) is required.

Assay Protocol

(Samples/calibrators should be diluted prior to step 1)

STEP 1: Add Diluent 7

□ Add 25 µL of Diluent 7 to each well. Seal the plate with an adhesive plate seal, and incubate for 30 minutes with vigorous shaking (500–1,000 rpm) at room temperature.

STEP 2: Add Sample or Calibrator

□ Add 25 µL of calibrator or diluted sample per well. Seal the plate with an adhesive plate seal, and incubate for 2 hours with vigorous shaking (500–1,000 rpm) at room temperature.

You may prepare detection antibody solution during incubation.

STEP 3: Wash and Add Detection Antibody Solution

- □ Wash the plate 3 times with 300 µL/well of 1X MSD Wash Buffer or PBS-T.
- □ Add 25 µL of 1X detection antibody solution to each well. Seal the plate with an adhesive plate seal, and incubate for 2 hours with vigorous shaking (500–1,000 rpm) at room temperature.

You may prepare diluted read buffer during incubation.

STEP 4: Wash and Read

- □ Wash the plate 3 times with 300 µL/well of 1X MSD Wash Buffer or PBS-T.
- Add 150 μL of 1X Read Buffer T to each well. Analyze the plate on an MSD instrument. No incubation in read buffer is required before reading the plate.

Analysis of Results

Run at least one set of calibrators in duplicate to generate the standard curve. The standard curve is modeled using least squares fitting algorithms so that signals from the calibrators can be used to calculate the concentration of analyte in the samples. The assays have a wide dynamic range (3–4 logs) which allows accurate quantification without the need for dilution in many cases. The MSD DISCOVERY WORKBENCH[®] analysis software uses a 4-parameter logistic model (or sigmoidal dose-response) and includes a $1/Y^2$ weighting function. The weighting function is important because it provides a better fit of data over a wide dynamic range, particularly at the low end of the standard curve.

Assay Validation and Verification

The performance of this kit meets levels of consistency and robustness outlined in "Fit-for-Purpose Method Development and Validation for Successful Biomarker Measurement" by Lee, J.W. et al.¹³

Bioanalytical and functional characterizations of calibrators, antibodies, and assay components are completed to allow for bridging of reagents between lots. This includes plate coating uniformity and reagent and component specificity testing for individual kit lots. Control samples for specific matrices are designed and tested to meet the accuracy, precision, and sensitivity criteria for a kit that has completed the validation process. Spike recovery and dilution linearity of endogenous samples, pooled and individual matrices, are tested across the assay range.

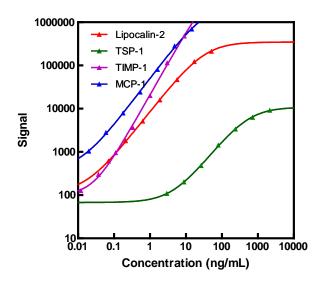
> Sensitivity, Range, and Curve Fitting

- Sample range and assay sensitivity are established from 4-PL fitted calibration curves with 1/Y² weighting. Percent recovery of calibrators and controls between the upper limit of quantification (ULOQ) and lower limit of quantification (LLOQ) must have calculated concentration %CV of less than 20% and accuracy within 20% of the expected concentration.
- The limits of quantification defined in the product insert are verified for each lot as part of the lot verification and quality control release.

> Accuracy and Precision

High, mid, and low controls made in matrix (defined on a kit-by-kit basis) are run to measure accuracy and precision.

- Validation The assay is tested over multiple days (>6 days) and multiple runs per day for a total of 15-20 runs of complete kits. Precision is measured for the standard curve for intra- and inter-day coefficients of variance (CVs) of less than 20%. The typical specification includes a calculated concentration CV of less than 20%, accuracy within 20% of expected concentration, and a total error of less than 30%. The kit specifications for this lot are provided in the enclosed COA.
- Verification A multi-day (2-3 days) analysis with multiple runs per day of 6-12 total plates is performed as part of the release testing for each lot. The specifications for release are provided in the COA.


> Robustness and Stability

Freeze-thaw testing and accelerated stability studies performed during assay development (calibrators, antibodies, controls) are augmented with real-time stability studies on complete kits out to 18 months from the date of manufacture.

All acceptance criteria and verification conformance are defined in the COA for all kit lots. Presented below are representative data from the assay validation for this assay that meets the criteria described above. The kit lot-specific standard curve and measured limits of quantification can be found in the COA enclosed with the kit.

Typical Data

The following standard curves illustrate the dynamic range of the assay. The actual signals may vary. Run a standard curve on each plate for the best quantification of unknown samples.

Lipocalin-2						
Conc. Average (ng/mL) Signal						
40	16.2					
608	8.3					
1804	7.6					
5129	6.2					
15 934	5.5					
46 911	4.3					
121 978	3.3					
211 776	4.5					
	Average Signal 40 608 1804 5129 15 934 46 911 121 978					

	TSP-1	
Conc. (ng/mL)	Average Signal	%CV
0	67	11.1
2.94	109	6.4
8.81	201	8.2
26.4	480	7.1
79.3	1423	5.4
238	3352	4.1
713	6283	4.9
2140	9150	6.4

TIMP-1						
Conc. (ng/mL)	Average Signal	%CV				
0	41	10.5				
0.0123	126	8.9				
0.0370	302	11.7				
0.111	951	11.6				
0.333	3659	6.9				
1.00	20 061	7.1				
3.00	114 424	6.2				
9.00	477 118	5.3				

MCP-1							
Conc. (ng/mL)	%CV						
0	216	5.3					
0.0199	1035	7.0					
0.0597	2799	9.1					
0.179	7928	7.0					
0.537	24 125	7.5					
1.61	80 489	6.8					
4.83	280 734	4.6					
14.5	693 324	3.7					

Sensitivity

The lower limit of detection (LLOD) is a calculated concentration based on a signal 2.5 standard deviations above the blank (zero calibrator).

A multi-plate, multi-day study was performed to measure the reproducibility of the assay. The lower limit of quantification (LLOQ) and upper limit of quantification (ULOQ) were established from the multiple plate run.

The LLOQ is determined as the lowest concentration where the %CV of the calculated concentration is less than 20% and the percent recovery of the standard is between 80% and 120%.

The ULOQ is determined as the highest concentration where the %CV of the calculated concentration is less than 25% and the percent recovery of the standard is between 75% and 125%.

	Lipocalin-2 (ng/mL)	TSP-1 (ng/mL)	TIMP-1 (ng/mL)	MCP-1 (ng/mL)
LLOD	0.00234	1.42	0.00300	0.000840
LLOQ	0.0330	29.7	0.0567	0.0447
ULOQ	27.6	766	6.71	11.0

Precision

Rat serum-based controls (high and mid controls) and diluent-based control (low control) were measured in quadruplicate on 16 runs over 5 days.

Average intra-plate %CV is the average %CV of the control replicates within an individual run.

Inter-plate %CV is the variability of controls across 16 runs over 5 days.

Inter-lot %CV is the variability of controls across 2 kit lots.

	Control	Runs	Average Conc. (ng/mL)	Average Intra-plate %CV	Inter-plate %CV	Inter-lot %CV
	High	16	8.81	4.6	6.4	4.6
Lipocalin-2	Mid	16	1.10	3.5	6.1	4.5
	Low	16	0.253	3.5	8.3	5.9
	High	16	1118	10.9	14.5	7.1
TSP-1	Mid	16	707	6.6	9.8	8.7
	Low	16	70.0	5.7	8.6	3.7
	High	16	3.84	3.9	5.2	5.2
TIMP-1	Mid	16	0.518	3.5	8.2	4.6
	Low	16	0.242	3.8	8.3	4.6
	High	16	8.64	4.6	5.1	6.1
MCP-1	Mid	16	0.806	5.9	7.5	9.4
	Low	16	0.0956	6.5	9.4	7.8

Spike Recovery

Normal rat serum, EDTA plasma, and heparin plasma were diluted 100-fold then spiked with calibrators at multiple levels throughout the range of the assay. Values in italics were below the assay LLOQ.

% Recovery=measured/expected*100

	Lipocalin-2				TSP-1			
Sample	Spike Conc. (ng/mL)	Measured Conc. (ng/mL)	Measured Conc. %CV	% Recovery	Spike Conc. (ng/mL)	Measured Conc. (ng/mL)	Measured Conc. %CV	% Recovery
	0	1.22	4.4		0	129	8.9	
Serum 1	1.18	2.33	6.9	97	54.4	173	7.4	94
	3.53	4.65	8.4	98	163	264	1.5	90
	10.6	10.9	3.3	92	490	496	3.0	80
	0	0.670	1.3		0	139	3.5	
Serum 2	1.18	1.79	4.8	97	54.4	183	2.5	95
Serum 2	3.53	3.95	0.6	94	163	283	4.6	94
	10.6	10.2	5.6	91	490	496	8.2	79
	0	0.638	6.1		0	147	3.5	
Corum 2	1.18	1.65	3.8	91	54.4	192	3.5	95
Serum 3	3.53	3.84	4.3	92	163	281	3.7	91
	10.6	10.8	2.6	96	490	510	6.0	80
	0	1.44	2.8		0	27.7	2.7	
EDTA	1.18	2.34	2.3	89	54.4	72.2	1.9	88
Plasma 1	3.53	4.42	5.7	89	163	168	7.6	88
	10.6	10.2	6.3	85	490	350	10.8	68
	0	1.03	1.1		0	21.1	7.2	
EDTA	1.18	2.09	8.0	95	54.4	79.0	14.3	105
Plasma 2	3.53	4.07	3.4	89	163	185	9.6	100
	10.6	10.2	10.7	88	490	459	6.2	90
	0	0.518	4.7		0	33.0	14.4	
EDTA	1.18	1.62	7.1	95	54.4	90.4	7.7	103
Plasma 3	3.53	3.61	2.3	89	163	186	5.9	94
	10.6	9.58	6.1	86	490	397	8.7	76
	0	1.54	2.4		0	31.9	3.5	
Heparin	1.18	2.61	4.3	96	54.4	79.4	3.7	92
Plasma 1	3.53	4.78	4.1	94	163	179	2.5	91
	10.6	10.9	6.1	90	490	407	1.9	78
	0	0.833	5.2		0	46.5	2.8	
Heparin	1.18	1.94	0.3	97	54.4	103	5.6	102
Plasma 2	3.53	4.24	3.3	97	163	202	4.8	96
	10.6	10.8	1.8	95	490	481	7.5	90
	0	0.841	5.0		0	38.9	4.1	
Heparin	1.18	1.98	6.4	98	54.4	87.5	9.5	94
Plasma 3	3.53	4.02	5.2	92	163	182	6.1	90
	10.6	10.6	8.3	93	490	407	5.7	77

		TIM	IP-1			МС	:P-1	
Sample	Spike Conc. (ng/mL)	Measured Conc. (ng/mL)	Measured Conc. %CV	% Recovery	Spike Conc. (ng/mL)	Measured Conc. (ng/mL)	Measured Conc. %CV	% Recovery
	0	0.0910	8.3		0	0.0550	0.6	
Serum 1	0.186	0.270	3.2	98	0.307	0.319	4.5	88
	0.559	0.620	4.4	95	0.920	0.931	12.0	95
	1.68	1.77	3.0	100	2.76	2.76	4.6	98
	0	0.0790	12.8		0	0.0710	2.6	
Serum 2	0.186	0.264	5.0	99	0.307	0.386	7.8	102
	0.559	0.624	2.1	98	0.920	0.902	1.7	91
	1.68	1.83	4.2	104	2.76	2.79	6.0	99
	0	0.0940	3.1		0	0.0950	3.4	
0 0	0.186	0.269	3.9	96	0.307	0.376	0.8	94
Serum 3	0.559	0.599	3.8	92	0.920	0.967	9.1	95
	1.68	1.82	6.4	103	2.76	2.98	5.7	105
	0	0.0790	2.5		0	0.0550	15.7	
EDTA	0.186	0.214	8.7	81	0.307	0.321	11.1	89
Plasma 1	0.559	0.570	12.9	89	0.920	0.921	4.4	94
	1.68	1.58	9.9	90	2.76	2.63	2.6	93
	0	0.101	7.0		0	0.0460	4.2	
EDTA	0.186	0.270	9.8	94	0.307	0.309	11.5	88
Plasma 2	0.559	0.614	7.2	93	0.920	0.819	4.5	85
	1.68	1.83	12.3	103	2.76	2.63	2.3	94
	0	0.0700	7.3		0	0.054	1.8	
EDTA	0.186	0.225	6.0	88	0.307	0.325	12.5	90
Plasma 3	0.559	0.566	8.1	90	0.920	0.876	6.7	90
	1.68	1.71	8.2	98	2.76	2.82	4.9	100
	0	0.0540	5.5		0	0.0450	8.3	
Heparin	0.186	0.216	6.8	90	0.307	0.307	2.1	87
Plasma 1	0.559	0.519	6.9	85	0.920	0.894	13.7	93
	1.68	1.75	7.7	101	2.76	2.55	4.3	91
	0	0.0510	9.6		0	0.0570	4.7	
Heparin	0.186	0.220	6.5	92	0.307	0.343	3.0	94
Plasma 2	0.559	0.539	8.6	88	0.920	0.934	5.5	96
	1.68	1.70	10.5	98	2.76	2.94	1.0	104
	0	0.0610	3.1	-	0	0.0410	5.5	-
Heparin	0.186	0.223	9.6	90	0.307	0.327	10.3	94
Plasma 3	0.559	0.544	11.0	88	0.920	0.772	5.1	80
	1.68	1.71	7.8	99	2.76	2.46	1.8	88

Dilution Linearity

To assess linearity, normal rat serum, EDTA plasma, and heparin plasma samples were diluted 50-fold, 100-fold, 200-fold, and 400-fold. The concentrations shown below have been corrected for dilution (concentration = measured x dilution factor). Percent recovery is calculated as the measured concentration divided by the concentration measured from the previous dilution (expected). % Recovery = % Recovery = (measured*dilution factor)/expected*100

			Lipocalin-2		TSP-1		
Sample	Fold Dilution	Conc. (ng/mL)	Conc. %CV	% Recovery	Conc. (ng/mL)	Conc. %CV	% Recovery
	50	229	4.3		17 636	2.8	
Serum 4 Serum 5	100	264	4.0	115	20 665	2.6	117
	200	247	2.8	93	21 758	8.7	105
	400	258	2.2	105	23 791	8.5	109
Serum 5	50	611	3.2		14 201	7.3	
	100	652	3.6	107	17 991	8.6	127
	200	615	5.3	94	17 685	9.3	98
	400	609	1.6	99	20 327	6.6	115
	50	79.2	1.4		20 285	3.4	
Serum 6	100	83.7	4.4	106	25 683	7.5	127
Serum 6	200	81.1	0.9	97	28 047	2.4	109
	400	87.5	5.7	108	29 018	2.0	103
	50	183	2.9		5568	4.0	
EDTA	100	189	5.3	103	6428	1.9	115
Plasma 4	200	188	3.0	99	7270	4.4	113
	400	189	0.8	101	7023	8.7	97
EDTA Plasma 5	50	158	9.0		3031	2.5	
	100	173	5.0	110	3640	8.1	120
	200	172	6.4	99	3394	4.4	93
	400	171	6.1	99	3362	5.2	99
	50	107	3.9		5135	2.5	
EDTA	100	112	4.3	105	6032	6.1	117
Plasma 6	200	110	3.3	98	6309	7.9	105
	400	110	1.5	100	5895	8.0	93
	50	218	1.4		2344	10.0	
Heparin	100	210	4.1	96	2548	5.6	109
Plasma 4	200	199	3.2	95	2272	1.5	89
	400	186	2.4	93	2091	11.8	92
	50	165	0.9		5704	2.9	
Heparin	100	177	1.9	107	6890	4.0	121
Plasma 5	200	178	2.9	100	6761	2.2	98
r Iasilia J	400	171	1.1	96	6452	10.8	95
	50	8.68	1.4		1594	3.4	
Heparin	100	8.86	3.5	102	1808	3.9	113
Plasma 6	200	9.24	1.9	102	1443	6.9	80
	400	9.13	9.6	99	1414	25.3	98

			TIMP-1			MCP-1	
Sample	Fold Dilution	Conc. (ng/mL)	Conc. %CV	% Recovery	Conc. (ng/mL)	Conc. %CV	% Recovery
Serum 4	50	11.7	0.4		13.6	9.0	
	100	13.1	2.8	112	15.2	8.5	112
	200	13.5	5.4	103	14.1	2.4	93
	400	15.3	4.4	113	16.9	6.5	120
Serum 5	50	17.0	4.0		13.0	1.3	
	100	18.2	5.0	107	15.3	3.6	118
	200	18.2	2.7	100	14.1	4.0	92
	400	20.0	3.2	110	15.1	0.9	107
Serum 6	50	10.6	3.0		12.5	9.8	
	100	11.8	6.9	112	13.2	5.0	105
	200	13.5	2.1	115	13.7	7.5	104
	400	15.0	4.6	111	16.0	3.6	117
	50	9.76	6.1		14.1	2.2	
EDTA	100	10.2	8.1	104	12.8	8.3	91
Plasma 4	200	12.0	4.2	118	13.8	6.7	108
	400	12.8	6.8	107	14.1	2.2	103
	50	11.1	6.3		5.75	5.7	
EDTA	100	12.5	5.8	113	6.13	6.0	107
Plasma 5	200	13.4	9.4	107	6.42	5.4	105
	400	15.0	8.6	111	6.71	3.2	105
	50	9.52	2.4		13.7	1.4	
EDTA	100	10.5	3.8	111	14.6	1.4	107
Plasma 6	200	11.1	4.1	106	16.0	5.0	109
	400	12.8	2.5	115	16.8	3.8	105
	50	9.39	2.3	-	9.80	9.0	
Heparin	100	9.64	10.1	103	9.15	5.0	93
Plasma 4	200	10.6	7.7	109	9.48	10.7	104
	400	10.2	9.8	97	9.01	3.1	95
	50	6.68	4.7		4.98	4.2	
Heparin Plasma 5	100	7.40	5.1	111	5.46	1.3	110
	200	8.18	1.8	111	5.68	7.1	104
	400	8.78	6.4	107	5.91	3.3	104
	50	8.59	9.5	107	5.96	12.3	101
Heparin	100	9.43	1.0	110	5.89	8.4	99
Plasma 6	200	10.3	2.8	110	6.08	4.5	103
	400	11.6	1.6	113	6.68	8.0	110
	400	11.0	1.0	115	0.00	0.0	110

Specificity

To assess specificity of the detection antibodies, the Inflammation Panel 1 (rat) was run using blended calibrators (17.0 ng/mL Lipocalin-2; 713 ng/mL TSP-1; 3.00 ng/mL TIMP-1; 4.83 ng/mL MCP-1) with individual detection antibodies. The table below shows the % cross-reactivity for the individual detection antibodies.

	Blended Calibrator and Single Detection Antibody % Cross-Reactivity				
Spot	Lipocalin-2	TSP-1	TIMP-1	MCP-1	
Lipocalin-2	100	0.4	<0.1	<0.1	
TSP-1	0.2	100	0.2	<0.1	
TIMP-1	<0.1	0.2	100	<0.1	
MCP-1	<0.1	0.9	<0.1	100	

Samples

Serum, EDTA plasma, and heparin plasma samples were collected from normal Sprague-Dawley rats, diluted 100-fold, and tested with the Inflammation Panel 1 (rat). Median and range of concentrations for each sample set are displayed below. Concentrations are corrected for sample dilution.

Sample	Statistic	Lipocalin-2	TSP-1	TIMP-1	MCP-1
	Median (ng/mL)	140	15 457	9.73	12.7
Serum	Range (ng/mL)	66.3–2681	11 540-22 288	7.19–17.5	6.39–30.5
	Ν	12	12	12	12
EDTA Plasma	Median (ng/mL)	129	3330	9.06	6.22
	Range (ng/mL)	5.40-245	1712–6225	7.11–13.4	3.14–13.9
	Ν	13	13	13	13
Heparin Plasma	Median (ng/mL)	132	5011	6.53	5.31
	Range (ng/mL)	4.30-235	1842-8273	4.70-10.6	3.65-10.6
	Ν	14	14	14	14

Assay Components

Calibrators

The assay calibrator blend uses the following recombinant proteins:

Rat Lipocalin-2 expressed in mouse cells

Rat TIMP- 1 expressed in mouse cells

Rat MCP-1 expressed in mouse cells

Human TSP-1 expressed in mouse cells

Antibodies

	Source Species		
Analyte	MSD Capture Antibody	MSD Detection Antibody	
Lipocalin-2	Mouse Monoclonal	Goat Polyclonal	
TSP-1	Mouse Monoclonal	Mouse Monoclonal	
TIMP-1	Mouse Monoclonal	Goat Polyclonal	
MCP-1	Goat Polyclonal	Goat Polyclonal	

References

- 1. Lee J-H, Kye KC, Seo E-Y, Lee K, Lee S-K, Lim J-S, Seo Y-J, Kim CD, Park J-K. Expression of Neutrophil Gelatinase-Associated Lipocalin in Calcium-Induced Keratinocyte Differentiation. J Korean Med Sci. 2008 Apr; 23(2):302-6.
- 2. De-xiu Bu, Anne-Louise Hemdahl, Anders Gabrielsen, Jonas Fuxe, Chaoyong Zhu, Per Eriksson, Zhong-qun Yan. Induction of Neutrophil Gelatinase-Associated Lipocalin in Vascular Injury via Activation of Nuclear Factor-κB. Am J Pathol. 2006 Dec;169(6):2245–53.
- 3. Mishra J, Ma Q, Prada A, Mitsnefes M, Zahedi K, Yang J, Barasch J, Devarajan P. Identification of Neutrophil Gelatinase-Associated Lipocalin as a Novel Early Urinary Biomarker for Ischemic Renal Injury. J Am Soc Nephrol. 2003 Oct;14(10):2534–43.
- 4. Bornstein, P. Diversity of Function Is Inherent in Matricellular Proteins: An Appraisal of Thrombospondin 1. J Cell Biol. 1995 Aug; 130(3):503-6.
- 5. Bornstein, P. Thrombospondins as matricellular modulators of cell function. J Clin Invest. 2001 Apr;107(8):929-34.
- 6. Chirco R, Liu X-W, Jung K-K, Kim H-RC. Novel functions of TIMPs in cell signaling. Cancer Met Rev. 2006 Mar; 25(1):99-113.
- 7. Stetler-Stevenson WG. Tissue inhibitors of metalloproteinases in cell signaling: metalloproteinase-independent biological activities. Sci Signal. 2008 Jul 8;1(27):rev6.Review.
- 8. Giannelli G, Erriquez R, Iannone F, Marinosci F, Lapadula G, Antonaci S. MMP-2, MMP-9, TIMP-1 and TIMP-2 levels in patients with rheumatoid arthritis and psoriatic arthritis. Clin Exp Rheumatol. 2004 May-Jun; 22(3):335-8.
- 9. Sundström J, Evans JC, Benjamin EJ, Levy D, Larson MG, Sawyer DB, Siwik DA, Colucci WS, Wilson PWF, Vasan RS. Relations of plasma total TIMP-1 levels to cardiovascular risk factors and echocardiographic measures: the Framingham heart study. Eur Heart J. 2004 May: 25(17):1509-16.
- 10. Roderfeld M, Graf J, Giese B, Salguero-Palacios R, Tschuschner A, Müller-Newen G, Roeb E. Latent MMP-9 is bound to TIMP-1 before secretion. Biol Chem. 2007 Nov; 388(11):1227-34.
- 11. Gerdprasert O, O'Bryan MK, Nikolic-Paterson DJ, Sebire K, Kretser DM, Hedger MP. Expression of monocyte chemoattractant protein-1 and macrophage colony-stimulating factor in normal and inflamed rat testis. Mol Hum Reprod. 2002 Jun;8(6):518-524.
- 12. Gu L, Rutledge B, Fiorillo J, Ernst C, Grewal I, Flavell R, Gladue R, Rollins B. In vivo properties of monocyte chemoattractant protein-1. J Leuk Bio. 1997 Nov;62(5):577-580.
- Lee JW, Devanarayan V, Barrett YC, Weiner R, Allinson J, Fountain S, Keller S, Weinryb I, Green M, Duan L, Rogers JA, Millham R, O'Brien PJ, Sailstad J, Khan M, Ray C, Wagner JA. Fit-for-purpose method development and validation for successful biomarker measurement. Pharm Res. 2006 Feb;23(2):312-28.

Summary Protocol

MSD 96-well MULTI-SPOT Inflammation Panel 1 (rat) Kit

MSD provides this summary protocol for your convenience. Please read the entire detailed protocol prior to performing the Inflammation Panel 1 (rat) assays.

Sample and Reagent Preparation

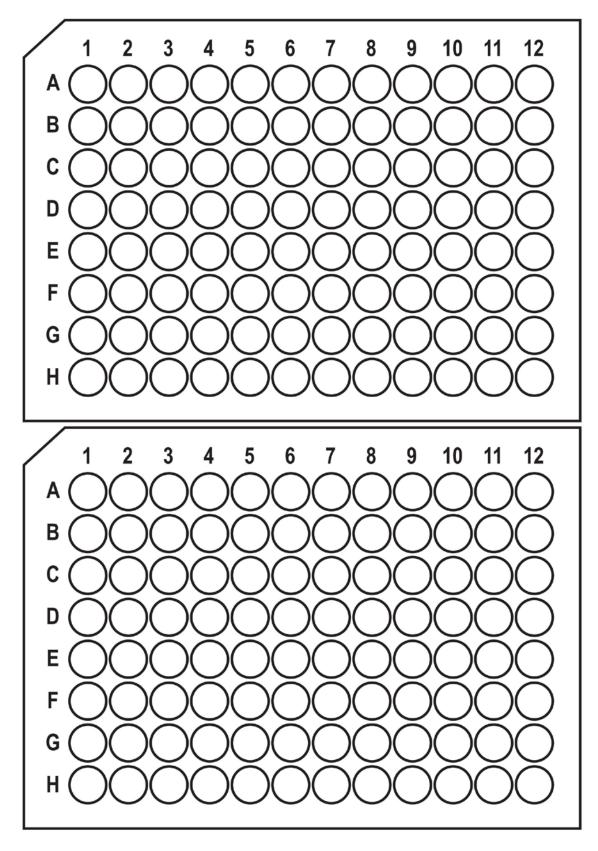
- Bring all reagents to room temperature, and thaw the calibrator on ice.
- Prepare an 8-point standard curve using the supplied calibrator:
 - o Dilute the stock calibrator blend 20-fold in Diluent 100.
 - o Perform a series of 3-fold dilution steps and prepare a zero calibrator blank.
- Dilute samples 100-fold in Diluent 100 before adding to the plate.
- Prepare combined detection antibody solution by diluting each stock detection antibody 50-fold in Diluent 100.
- Prepare 1X Read Buffer T by diluting stock 4X Read Buffer T 4-fold with deionized water.

STEP 1: Add Diluent 7

- \Box Add 25 µL/well of Diluent 7.
- Incubate at room temperature with vigorous shaking (300–1000 rpm) for 30 minutes.

STEP 2: Add Sample or Calibrator

- Add 25 µL/well of calibrator or diluted sample.
- Incubate at room temperature with vigorous shaking (300–1000 rpm) for 2 hours.


STEP 3: Wash and Add Detection Antibody Solution

- **Δ** Wash plate 3 times with 300 μL/well of PBS-T.
- Δ Add 25 μL/well of 1X detection antibody solution.
- Incubate at room temperature with vigorous shaking (300–1000 rpm) for 2 hours.

STEP 4: Wash and Read Plate

- Wash plate 3 times with 300 µL/well of 1X MSD Wash Buffer or PBS-T.
- Add 150 µL/well of 1X Read Buffer T.
- Analyze plate on an MSD instrument.

Plate Diagrams

