MULITI-ARRAY Human E-Cadhherin Assay
 Detection ofE-Cadherin in Human Serum and Plasma Samples

BSA Blocked

Concentration (pg/mL)	Average	$\% \mathrm{CV}$
0	85	19
1	71	31
10	193	13
100	1,616	13
1,000	12,272	10
10,000	112,665	9
100,000	713,947	8
$1,000,000$	$1,351,953$	9

E.Cadherin LLOD
 4 (pg/mL)

LLOD (Lower Limit of Detection) is defined
as 2.5 x stdev above the background

Kit Size	Catalog Number
I plate	KI5IIZC-I
5 plates	KI5IIZC-2
20 plates	KI5IIZC-3
20 plates (Base)	KI5IIZA-3

Standard curve data is from a representative experiment
$\mathrm{I}: 10$ dilution of serum and plasma samples is recommended for this assay

MULITI-ARRAY Human E-Cadherin Assay
 Detection ofE-Cadherin in Human Serum and Plasma Samples

Dilutional Linearity

- Samples from 7 apparently healthy donors were diluted in Calibrator Diluent

$$
\% \text { recovery }=\frac{(\text { measured value } * \text { dilution factor } * 100)}{\text { predicted value }}
$$

- IX dilution refers to the dilution recommended for serum, i.e. a IO-fold dilution

Dilution Factor	Percent Recovery $(\%)$
2 X	119
0.5 X	82
0.25 X	67

Sinie Recuvery

- Measured analyte spiked into apparently normal human samples

$$
\% \text { recovery }=\frac{(\text { measured spiked value }- \text { measured native })}{\text { spike }}
$$

Sample	Neat $(\mathrm{ng} / \mathrm{mL})$	Spiked $(\mathrm{ng} / \mathrm{mL})$	Percent Recovery $(\%)$
SI	14	83	71
$S 2$	8	69	61
$S 3$	5	103	98
$S 4$	6	69	63
$S 5$	17	91	75
S6	14	93	80
S7	14	92	80

Average Percent Recovery (\%)

Endogenous Levels in Human Samples

- 95 normal human donors, Serum
- Average CVs for measured samples was less than 10%

N $(\mathrm{ng} / \mathrm{mL})$	Mean $(\mathrm{ng} / \mathrm{mL})$	Median $(\mathrm{ng} / \mathrm{mL})$	Range $(\mathrm{ng} / \mathrm{mL})$
95	53	50	$20-106$

