Design and Validation of a Non Cell-based Receptor Binding Assay for the Detection of Neutralizing Antibodies to a Biological Therapeutic

> Shalini Gupta Associate Director Amgen, Thousand Oaks, CA <u>shalinig@amgen.com</u>

> > May 24th, 2005

Provide a functional biological system to assess if the Abs detected by the immunoassay have neutralizing capability

Cell-based NAb Assay Designs

- Utilize intracellular signaling events triggered within a cell line that responds to :
 - * the drug product (eg. cytokines)
 - * the ligand inhibited by the drug product (eg. MAbs)
- May also utilize study of extracellular binding events at the cell surface (eg. MAbs)

Requirements for Cell-based NAb Assays

- Stable cell line responsive to drug
- Measurable Readout (cpm, OD, conc of secreted protein)
- Robust signal to noise ratio in serum matrix
- Availability of a positive control antibody to the drug
- Medium to High Throughput
- Adaptable to Automation

Justification For a Non-cell Based NAb Assay

- Drug product : blocked ligand activity
- Limited choice of cell lines expressing the receptor for ligand that was target for drug product
- Only cell line available yielded at best 2-fold signal when treated with 100-200 ng/mL ligand
- Cell line had finite life span
- Difficult cells to culture
- Low throughput (24-well plates)
- Irreproducible bioassay results

Meso-Scale Discovery (MSD) Technology

Meso-Scale Discovery (MSD) technology employs microtitre plates fitted with a series of electrodes associated with the bottom of each well.

Using an MSD Sector PR[™] plate reader, an electrical current is placed across the plateassociated electrodes in the presence of a Tripropylamine (TPA) containing buffer.

The result is a series of electrically induced oxidationreduction reactions involving Ruthenium (from the captured complex) and TPA leading to a luminescent signal. The consequent electrochemiluminescent (ECL) signal is measured by photodiodes and is quantified as a relative unit (RU).

Assay Reagents

- Purified Soluble receptor (ruthenylated)
- Purified Ligand (biotinylated)
- Drug product (TP)
- Streptavidin-coated MSD Plates
- Cynomolgus monkey serum
- Affinity purified rabbit anti-TP antibody

Assay Methodology

Assay Development

- Optimized ratio between Ru-R and Biot-L for optimal signal
- Used 50% cyno serum for initial development expts
- Due to donor (n=10) variability serum was reduced to 15%
- Optimized order of mixing of reagents (capture vs. homogenous)
- Improved precision and inter-day repeatability in homogenous format with assay controls

Optimized Assay Conditions

- 15% cynomolgus monkey serum
- 250 ng/mL Biot-Ligand
- 900 ng/mL Ru-R
- 80 ng/mL TP

Assay Controls

N = background (15% PCS with R-Ru)

- M = maximum binding (15% PCS with R-Ru and L-biot) D = drug control (15% PCS with TP, r-RU and L-biot)
- P = positive control (D with anti-TP antibody)

FACS Analysis of a Cell Line Naturally Expressing the Target Receptor

• A cell line naturally expressing the receptor was used to demonstrate:

L-Biot binding, inhibition of binding by TP
Restoration of binding by the anti-TP NAb.

• Binding of L-Biot to the receptor was detected using a SA-FITC conjugate.

•Receptor expression was confirmed using a biotinylated goat polyclonal anti-receptor Ab and detected with SA-FITC.

• Binding of L-Biot to the target receptor was inhibited by the TP and restored by the anti-TP NAb.

POSITIVE

Validation Experiments

- TP dose response curves
- Positive Control Ab curves
- NAb assay cutoff
- Specificity Assay Cutoff
- Interference by drug product
- Freeze-thaw stability

Inhibition of L-Biot Binding to R-Ru By TP in 15% Pooled Cynomolgus Monkey Serum

• TP was incubated at increasing concentrations with 250 ng/mL L-Biot followed by incubation with 900 ng/mL R-Ru in 15% PCS.

• TP showed a dose dependent inhibition of L-Biot/R-Ru binding.

• A concentration of 80 ng/mL TP was chosen to be used for the Screening Assay.

Neutralization of TP and Restoration of Ligand Binding by Anti-TP Neutralizing Antibody in Pooled Cynomolgus Monkey Serum

• Rabbit Polyclonal anti-TP Antibody (NAb) was added to neat PCS.

•The Ab containing PCS was diluted to 15% and preincubated with 80 ng/mL TP followed by sequential incubations with 250 ng/mL L-Biot and 900 ng/mL R-Ru.

• Anti-TP antibody showed a dose dependent restoration of L-Biot/R-Ru binding to maximal binding signal (above curves represent 2 days testing)

•The lowest concentration of Anti-TP Nab to restore binding by twofold was 1 μ g/mL

Precision and Analytical Recovery of the PAb

Ab (ug/ mL)	0.055	0.11	0.22	0.44	0.88	1.75	3.5	7	14
AR	356%	<mark>228%</mark>	117%	138%	98%	99%	98%	87%	68%
%CV									
Inter- day	19%	29%	17%	8%	11%	<mark>2%</mark>	4%	25%	77%
Inter- assay	35%	40%	44%	16%	8%	3%	7%	0.00	49%
Intra- assay	14%	20%	14%	13%	10%	<mark>2%</mark>	9%	26%	104%

Screening Assay Cutoff

• Serum from 50 individual cynomolgus monkeys was tested at a final dilution of 15% with 80 ng/mL TP, 250 ng/mL L-Biot and 900 ng/mL R-Ru.

•Samples results were compared with control results in PCS to by dividing Sample Results/Control Results (Screening Ratio).

 Samples were tested on two separate days and the Ratio 1 values were combined to establish an assay cutoff using the upper bound of the 95% prediction limit.

• The assay cutoff (Screening Ratio) was determined to be 1.26.

Specificity Assay Cutoff

 Serum from 50 individual cynomolgus monkeys was tested at a final dilution of 15%, 250 ng/mL L-Biot and 900 ng/mL R-Ru in the absence of the TP to assess for nonspecific enhancement of ligand binding.

•Samples results were compared with control results in PCS to by dividing Sample Results/Control Results (Ratio 3).

•The Ratio 3 values were used to establish an assay cutoff using the upper bound of the 95% prediction limit.

• The assay cutoff (Specificity Ratio) was determined to be 1.71.

AP Criteria for Positive/Negative

- Assay Acceptance Criteria
 - M/N ≥ 10
 - − M/D ≥ 2.0
 - − P/D ≥ 1.26

Predose: Ratio $1 \ge 1.26$ Ratio 3 < 1.71Postdose: Ratio $2 \ge 1.26$ Ratio 3 < 1.71

Post/Pre used because some individual animals yielded extremely low Ratio 1 values

Antibody Detection in Individual Monkeys

• Serum from 50 individual cynomolgus monkeys was tested treated and untreated with 2 μ g/mL anti-TP NAb at a final dilution of 15% in the Screening or Specifcity Assay.

• A Ratio of Treated/Untreated samples (Post/Pre) was calculated and the Screening Ratio cutoff value was applied (1.26).

•Samples results were compared with Post/Pre and Specificity Ratio cutoff values.

• All samples treated with anti-TP NAb were above the Post/Pre Ratio cutoff.

•All samples treated with anti-TP NAb were below the Specificity Ratio cutoff except for three. These represent false negative samples.

•All untreated samples were below the Screening and Specificity Ratio cutoff (data not shown).

Excess Drug Interference

•Rabbit polyclonal anti-TP antibody was prepared in neat PCS at 20, 10, 4 and 2 μ g/mL. At each concentration of antibody, the TP was titred from 68.6, 34.3, 17.15, 8.576, 4.288, 2.144, 1.072, 0.536 and 0 μ g/mL μ g/mL in neat PCS.

•The ability of the assay to detect 2 and 4 μ g/mL anti-TP antibody was inhibited by 80 ng/mL excess TP (536 ng/mL in neat serum). The assay is able to detect 10 μ g/mL anti-TP antibody in the presence of up to 160 ng/mL (1.07 μ g/mL in neat serum) excess TP and 20 μ g/mL in the presence of up to 320 ng/mL (2.14 μ g/mL in neat serum) excess TP.

Effects of Freezing and Thawing on Antibody Detection

- Positive control anti-TP antibody was added to PCS at the LOD of the assay (2 μg/mL).
- All samples containing antibody were positive up to 3 freeze thaw cycles while all untreated samples remained negative

Study Results

Animal	Dose Group	Immunoassay Result	Neutralizing Antibody Result
1	Low	Negative	Not Analyzed
2	Low	Negative	Not Analyzed
3	Low	Negative	Not Analyzed
4	Mid	Negative	Not Analyzed
5	Mid	Negative	Not Analyzed
6	Mid	Negative	Negative
7	High	Positive	Positive
8	High	Negative	Not Analyzed
9	High	Negative	Not Analyzed

•Serum Samples from Cynomolgus Monkeys dose with TP that were found to be Reactive in a Screening Immunoassay were tested in the Receptor-Binding Assay

•Of the samples tested one sample was found to be positive for neutralizing antibodies which correlated with the Immunoassay result.

Conclusions

A robust and sensitive receptor binding assay was develop for the detection of neutralizing antibodies to a TP in cynomolgus monkey serum

The assay was able to detect 2 μ g/mL rabbit polyclonal anti-TP antibody in monkey serum in the presence of 80 ng/mL TP.

The successful implementation of the assay detected antibodies in 1 animal from a preclinical pharmacokinetic study (11% incidence).

Concluding Comments

- Dependent upon quality of reagents
- Biological activity of reagents should be evaluated
- Sequence of assay steps extremely important
- Serum still an important factor
- Quick readout
- Assay development requires careful consideration
- Ratio of ligand/therapeutic important
- Not a slam dunk!

Acknowledgements

- Jason Pennucci
- Mike Moxness
- Gene Koren
- Jad Zoghbi
- Darin Asbury (Protein Sciences)
- John Thomas (Flow)
- Ling Wang (Research)